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No-arbitrage-arguments then lead to the fundamental Hull-White
equation
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which needs additional end and transition conditions. The calculation
domain is, in principle, unbounded. We will discuss the problem of
boundary conditions, when restricting ourselves to a bounded calcula-
tion domain, below.

The end and transition conditions describe the special shape of a
financial contract, like coupons, callabilities and so on. 

The given partial differential equation can be interpreted as a diffu-
sion-convection-reaction equation. This type of equation is typically found
in applications in continuum mechanics, especially in fluid mechanics.
The dissolving of sugar in a cup of coffee, for example, could be described
by this type of equation. The dispersion of the sugar due to concentration
differences is a diffusion process, described by the second order terms in
the equation. The spreading of the sugar driven by a stirring spoon is the

Introduction
We consider models for financial instruments which can, after some
manipulation, be written in the form of parabolic partial differential
equations backwards in time. The manipulation typically requires some
Itô calculus, the creation of a risk-free portfolio and self-financing hedg-
ing strategies and some assumptions (like zero transaction costs), which
are certainly wrong but a good starting point. LIBOR market models typi-
cally do not fall into this category, but short rate models do.

For example, let us start with a two-factor Hull-White interest rate
model (see Hull-White 1994)

dr = [θ(t) + u(t) − a(t)r(t)]dt + σ1(t)dX1

du = −b(t)u(t)dt + σ2(t)dX2

The first factor r denotes the spot rate, the second factor u some kind of
long-term development of the interest rates. a is the mean reversion
speed of the spot rate r, (θ + u)/a its reversion level. The stochastic vari-
able u itself reverts to a level of zero at rate b. dX1 and dX2 are increments
of Wiener processes with instantaneous correlation ρ(t). σ1 and σ2 are
the volatilities.

Abstract
The numerical treatment of partial differential equations in computational finance started with binomial and trinomial trees, with all the drawbacks related to these approach-
es. In the meanwhile (see, e.g., Duffy 2004, in the July issue of this magazine), finite differences are widely used in modern derivatives pricing. We present how pricing software
can be developed on the basis of finite element techniques, which allow more flexibility than finite differences. 

Mean reverting models for interest rates tend to become numerically difficult in regions sufficiently far away from the mean-reverting level. The reason is that the convec-
tion dominates the diffusion in these regions, and therefore techniques for convection-dominated flows should be applied. We present how streamline diffusion is applied to
obtain stable numerical schemes.

We implemented these approaches in a strictly object-oriented software framework. Some software engineering aspects are also highlighted.
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convective part, given by the first order terms, and strongly dominated by
the velocity of the coffee. The dissolving of the sugar itself is described by
the reactive part, which is the last term at the left hand side of the equa-
tion. The following picture, which shows velocity vectors in the ru-plane,
could give the motion of the coffee forced by the stirring spoon, but, in
fact, it gives the deterministic movement of the interest rates in a two-
factor Hull-White interest rate model.
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or, e.g., of Crank-Nicolson type (α = 0.5)
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The top indices n and n + 1 are used for the values at different time levels,
where the values at time level n are known and the values at time level
n + 1 are unknown. For ease of readability we will use the fully implicit
time discretisation in the following.

The computational domain  is discretised into finite volumes
i, i = 1, . . . , N . The next step is to integrate the equation over these
finite sub-domains:∫
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Those volume integrals which contain a divergence term are converted
into surface integrals by Gauss’ theorem and are evaluated as fluxes
across the boundaries �i of each finite volume. (nr, nu) denotes the outer

This picture demonstrates that in the two-factor Hull-White model
the convective part becomes more and more important the larger the
considered domain.

It is obvious now that numerical methods used in computational
fluid dynamics to solve equations of this type, will work well also for our
pricing problems. In computational fluid dynamics it is well known that
in the cases of comparatively large or dominating convection standard
numerical discretisation techniques lead to instabilities in the numeri-
cal solution. These instabilities result in high oscillations. We have to use
so-called upwind-strategies, which take into account that in the case of
dominating convection the solution in each point is strongly deter-
mined by the information transported with the velocity.

Since in the considered pricing problems end conditions for the
quantity V are prescribed we have to solve the equation backwards in
time. So the information transport due to convection starts in the centre
and goes to the boundary.

Numerical Schemes and Finite Elements
Finite volume method
The basic idea of the finite difference method is to approximate the
derivatives in the partial differential equation by finite differences. In
the case of higher dimensions, especially when including mixed deriva-
tives, a more general formulation is preferred and known under the
name finite volume method. The essential idea is to use an integral for-
mulation, integrating the equation over a mesh region and applying
Gauss’ theorem before carrying out the discretisation:

We start already from the time discretised equation, either fully
implicit
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The finite dimensional equation is then obtained by the use of quadra-
ture rules for the given integrals. As outlined in the introduction the dis-
cretisation of the convection term requires special attention. The flux
across the boundaries due to convection has to be treated with special
upwind techniques, like Lax-Wendroff or QUICK schemes (see Morton
1996). Detailed analysis of the obtained numerical schemes leads to the
conclusion that the introduction of upwind schemes is equivalent to the
addition of artificial numerical diffusion.

In the early references the finite volumes are usually rectangular and
occasionally quadrilateral, extending to hexahedral volumes in three
dimensions. In the case of rectangular finite volumes the obtained dis-
cretisation schemes are equivalent to the one obtained using the finite
difference approach.

Finite Element Method
The finite volume method itself can be treated as a variant of the finite
element method. Starting point for the finite element method is the
weak formulation of the given equation. Under the assumption that we
are looking for a function V in a function space U we can write the weak
form of the already implicitly time discretised problem as:

Find Vn+1 ∈ U such that, for all w ∈ U,
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Applying Gauss’ theorem in the second order terms lead us to

Find Vn+1 ∈ U such that, for all w ∈ U,
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Consider a discretisation i, i = 1, . . . , N of the domain  and Uh ⊂ U a
finite element space that consists of piecewice polynomials. Replacing
the trial and test space U by this finite dimensional space Uh and approx-
imating the function V by a linear combination of basis functions of the
trial space lead to the finite dimensional problem. This would be the
standard finite element approach disregarding possible difficulties
caused by dominating convection. Up to now the special type of the equa-
tion is not taken into account. A rather elegant way to introduce upwind
techniques to this scheme is used in the method of streamline diffusion
(see also Roos-Stynes-Tobiska 1996).

Streamline Diffusion—Going
with the Flow
The fundamental idea of this method is to add extra diffusion in the direc-
tion of the streamline – hence the name streamline diffusion. From the
technical point of view this is realized by replacing the test function w with
a test function of the form w + δiv · ∇w, where v(= (θ + u − ar, −bu)T)

denotes the velocity, and δi is called the SD-parameter.
The weak formulation then reads as:
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which has the typical form of a diffusion term. The SD-parameter δi

depends on the size of the finite elements and on the convection-diffusion
ratio, so artificial diffusion is chosen higher in convection dominated
regions and smaller in regions where diffusion dominates.

Although the size of the computational domain is, in principle,
unbounded, we have to do our calculations on a bounded domain. It is
always difficult to find appropriate and realistic boundary conditions for
each structured financial instrument considered. We choose the size of
the computational domain in a way such that the information of the pre-
scribed boundary condition does not get through to the centre, during
the considered time interval. The centre of the domain is determined by
the current short rates. So the choice of boundary conditions, which have
to be set for solving the partial differential equation, has no influence on
the solution. This may be interpreted in such a way that the probability of
very high or low, maybe even negative, interest rates is very small. 

Therefore it is clear that the size of the computational domain
depends on the life time of the considered instrument and on the param-
eter which form the coefficient functions of the partial differential equa-
tion: volatility, drift and mean reversion. 

In the method of finite elements we are very flexible concerning the
discretisation of . Structured as well as unstructured grids with adap-
tive refinement in regions where it is necessary can be chosen. The stan-
dard setting in our calculation is a structured, two-dimensional, quadri-
lateral grid with graded higher resolution in both directions near the
values of interest of the factors r and u.

Discretisations in time and space (r-u-plane) can be chosen independ-
ently in the case that we use implicit time discretisation, either fully
implicit or some kind of Crank-Nicolson (see e.g. Duffy 2004).

Solution of the Linear Equations
The discretisation leads then to sparse linear systems with typically thou-
sands of variables for each time steps. These are then solved iteratively by
Krylov subspace techniques which typically show very fast convergence.

Comparison to Analytic Solution
In the following we compare the numerical results for the pricing of zero
coupon bonds with face amount 1 and different life times obtained by the
use of standard finite elements, finite elements with streamline diffusion,
and the analytical solution under the two factor Hull-White interest rate
model with constant model parameters. The used parameter settings are:

a = 1.2, b = 0.03, θ = 0.05, σ1 = 0.02, σ2 = 0.01, ρ = 0.5

Life times Analytical solution Standard finite Finite elements with 
elements streamline diffusion

1 year 0.954581 0.95458 0.95458
10 years 0.661886 0.661777 0.661855
20 years 0.461421 0.460902 0.461405
40 years 0.268027 0.265955 0.268311

Life times Analytical solution Standard finite Finite elements with 
elements streamline diffusion

1 year 0.954581 0.954592 0.954582
10 years 0.661886 0.663975 0.661414
20 years 0.461421 0.472521 0.459271
40 years 0.268027 0.464601 0.262467

These results confirm, even for this simple example, that the longer
the life time of an instrument, the more important the usage of upwind
techniques. We used a discretisation with a time step of 20 days and a
space discretisation of 30 × 30 points (which are quite few points for
instruments with such long lifetimes.

If we use a space discretisation which is even coarser, namely 10 × 10
(obviously too coarse), we still obtain realistic results in the streamline
diffusion case, but unacceptable result for long life times in the standard
finite element case:

Software Architecture
We laid special emphasis on implementing these numerical tech-

niques in a strictly object-oriented framework. We used C++ as program-
ming language utilizing the concepts of objects, class hierarchies and
polymorphism. 

— An object has state (data) and behaviour (functions). Each object is creat-
ed from a class which is a specification of the data and functions. All
objects of a class have common behaviour but generally different state. 

— Using class hierarchies, classes with common components and opera-
tions need not be recoded. This mechanism is called inheritance. 

— And last but not least, polymorphism allows different kind of objects
that have common behaviour to be used in code that only uses this
common behaviour. 
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A detailed introduction into the object-oriented programming style
with special emphasis on scientific and engineering programs can be
found in Barton-Nackman 1994, for a general description and as a refer-
ence manual see Stroustrup 2000.

How are these concepts realized 
in our code?
Each instrument which can be priced with our finite element code con-
sists of the base class BasisInstrument and different AttributeManagers.
These AttributeManagers handle different possible attributes of a struc-
tured financial instrument, like callability, coupon payments, or discrete
dividends. So for example a callable, convertible, fixed rate bond inherits
the same class Callable as a callable constant maturity floater. So the
implementation of a new structured instrument having already existing
attributes is rather easy. All attributes which exist already can be com-
bined with new ones to add new instruments.

The core of the two-factor pricing is built by the class FEPricer
(FiniteElementPricer). This class knows everything needed about finite
elements with streamline diffusion. With the aid of pointers to an object
of the class BasisModel and to an object of the class BasisInstrument the
information which two-factor model should be used and which instru-
ment should be priced is obtained. In this part of the program, polymor-
phism is strongly applied.

Going Further
In the previous sections, we have derived the numerical schemes for the
solution of the two factor Hull-White differential equation. These meth-
ods (finite elements and streamline diffusion) can of course also be
applied to different problems like: different interest rate models which
can be written as PDEs, quanto swap problems being built from two one-
facto interest rate models, callable convertible bonds and many more.
The techniques can also be applied for models in more than two space
dimensions. Realistically, there will be a performance problem in prob-
lems with 4+ space dimensions which would lead to equations with mil-
lions of unknowns. 

Until now, we have not said too much about end and interface condi-
tions. Consider, e.g., a callable reverse CMS, i.e. a bond, which pays annu-
al coupons of, say, 10% minus the 5 year swap rate, capped at 7% and
floored at 2%. These coupons should be set at the beginning of each
coupon period. The lifetime of these instruments is typically quite long
(10 to 30 years). To make it more complex, the instrument is equipped
with a Bermudan callability at each coupon date. 

How do we obtain the swap rates at the coupon set dates? The Hull-
White equation has a Green’s function (the calculations may become
quite tedious if the parameters in the model are not constant but, say,
piecewise constant). The value V(r, u, t) of a zero coupon bond maturing
at a time T requires then the calculation of some integrals only. Swap

rates can then be obtained by reverse bootstrapping and taking into
account the appropriate day count conventions for the swaps. 

At maturity, the bond pays the redemption plus the coupon which
was set at the beginning of the last coupon period and which we there-
fore do not know when propagating backwards from maturity. What we
can do, is calculate the different discount factors from maturity to the
coupon set date in the different states of r and u at the coupon set date
and then multiply them by the coupon rate at the set date. 

If the instrument is callable, we have to compare the staying alive
value and the call price and take the minimum at the Bermudan call
dates. Continuing this propagating backwards, we finally reach the valu-
ation date. 

More Software Architecture
Our UnRisk library is not linked to some external C++ -code, but is
installed within Mathematica as an application package. Therefore we
have the following architecture:

UnRisk is called by the Mathematica Kernel, which itself is called
either by the Mathematica front end or (via Mathematica Link for Excel)
by the Excel front end. Using the Excel front end, the user typically
obtains market information like interest rates or volatilities from infor-
mation providers like Reuters or Bloomberg.

The Mathematica front end, on the other hand, may be used to write
additional code, to produce interactive documents or to generate graph-
ics and animations.

The valuation of a callable reverse floater in the Mathematica front
end might look like this:

Load the package
Needs[“UnRisk`UnRiskFrontEnd`”]

Construct a reverse floater (maturity 2024) which pays annual coupons
of 12 percent (“Margin”) minus (“Reference Weight”) the 5 years (=60
months) swap rate set in advance (“RefixAttributes”) with caps and floors
at 8 and 2 percent, repectively.

MyGeneralCMF=MakeGeneralCMFloater[{0.05}, {2024, 10, 10},

{2004, 10, 10}, {2005, 10, 10}, 60, FaceAmount→100,

CouponFrequency→”Annual”, CouponBasis->”30/360”,

RateFrequency->”Annual”, RateBasis->”30/360”, Margin→0.12,

ReferenceRate->”Swap”, RefixAttributes→{1, 0, 12},

ReferenceWeight→1, Cap→0.08, Floor→0.02];

The bond should be callable annually, starting in 2009

MyCallSchedule=MakeCallPutSchedule[Table[{{2008+i, 10, 10}, 1.},

{i, 1, 15}]];

MyCPGeneralCMF=MakeCPGeneralCMFloater[MyGeneralCMF,

CallSchedule→MyCallSchedule, CallExercise->”Bermudan”,

CallAccrued→True];
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Construct the Two-Factor-Hull-White model from interest rate curves, cap
volatilities and at-the-money swaption volatilities. 

MyToday={2004, 10, 26;}

MySwapCurve=MakeSwapCurve[MyToday, {{7, .03331 {31, .03162},

{62, .03125}, {92, .03043}, {123, .03011}, {153, .02989}, {184,

.0297}, {274, .02959}, {365, .02973}, {730, .0324}, {1095,

.03525}, {1461, .0378}, {1826, .03995}, {2191, .04185}, {2556,

.0435}, {2921, .0448}, {3286, .0459}, {3651, .0468}, {4380,

.04825}, {5475, .0497}, {7300, .051}, {9125, .05145}, {10950,

.0513}}, MoneyMarketBasis->”ACT/360”, SwapBasis->”30/360”,

SwapFrequency->”Annual”];

MyYieldCurve=MakeYieldCurve[MySwapCurve];

MyCapStrikes={0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055,

0.06, 0.07, 0.08, 0.09, 0.1};

MyCapMaturities={{2, “30/360”, “Quarter-Annual” {3, “30/360”,

“Semi-Annual”}, {4, “30/360”, “Semi-Annual”}, {5, “30/360”,

“Semi-Annual”}, {6, “30/360”, “Semi-Annual”}, {7, “30/360”,

“Semi-Annual”}, {8, “30/360”, “Semi-Annual”}, {9, “30/360”,

“Semi-Annual”}, {10, “30/360”, “Semi-Annual”}};

MyCapVolas ={{.288, .262, .249, .253, .26, .268, .276, .283,

.296, .31, .324, .339 {.289, .257, .236, .221, .218, .219,

.222, .229, .239, .252, .267, .284}, {.281, .249, .224, .207,

.199, .196, .196, .199, .206, .218, .233, .247}, {.274, .242,

.216, .198, .187, .18, .178, .178, .183, .193, .205, .219},

{.267, .236, .21, .191, .178, .168, .165, .164, .166, .174,

.184, .197}, {.261, .231, .205, .185, .171, .161, .156, .154,

.154, .16, .169, .18}, {.256, .226, .201, .181, .166, .155,

.149, .146, .146, .15, .158, .167}, {.251, .222, .198, .177,

.162, .151, .144, .14, .139, .142, .149, .157}, {.246, .219,

.195, .174, .159, .148, .139, .136, .135, .137, .143, .15}};

MySwaptionExpiries={2, 5, 10;}

MySwaptionEnds={3, 5, 10, 20;}

MySwaptionVolas ={{.179, .156, .131, .118 {.129, .121, .112,

.105}, {.105, .104, .101, .096}};}

MySwapFrequency=”Annual”;

MySwapBasis=”ACT/360”;

MyModel=Make2DModel[MyYieldCurve, MyCapMaturities,

MyCapStrikes, MyCapVolas, MySwaptionExpiries, MySwaptionEnds,

MySwaptionVolas, SwapFrequency->MySwapFrequency, SwapBasis-

>MySwapBasis];

The calibration problem is an ill-posed problem meaning that small
perturbations in the data can lead to arbitrarily large perturbations in
the resulting interest rate model parameters if no special stabilizing tech-
niques, so called regularization methods, are applied. We will discuss
this aspect in a forthcoming paper. 
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Our experience shows that one should use as many swaption data as
available especially on the long end of lifetimes to obtain good pricing
results for bonds with long lifetimes.

Valuate the bond

SettlementDay=ShiftByBusinessDays[MyToday, 3];

Valuate[MyCPGeneralCMF, MyToday, SettlementDay, MyModel]

{113.676,113.426,-11.3674,102.309,102.059}

The returned vector contains dirty and clean value of the pure
reverse CM floater (without callability), the option value of the callabili-
ty, and dirty and clean value of the callable reverse CMF. 

Conclusions
We have presented how finite element techniques can successfully be
applied to the pricing of complex structured instruments. Streamline
diffusion turns out to be a method which is capable of stabilizing prob-
lems with large or dominating convection.
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