
Letters from a SteelTown

Following Shreve, we can write down closed-form solutions for the fair
value at time t of a (credit-risk-free) zero coupon bond B(t,T), which matures
at a future time T

B(t, T) = exp{−r(t)C(t, T) − A(t, T)}.
when the short rate at time t is assumed to be r(t) where

K(t) =
∫ t

o
β(u)du,

A(t, T) =
∫ T

t

[
eK(v)α(v)
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e−K(y)dy

)
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v
e−K(y)dy
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]

dv,

C(t, T) = eK(t)

∫ T

t
e−K(y)dy,

Assume now that – for some reason – the reversion speed and the volatility
are known or given functions. Then K(t) is known, C(t,T) is known, and A(t,T)
is a linear well-defined integral operator acting on α(t) plus the known func-
tion containing the volatility. Thus, the determination of alpha amounts to
solving an integral equation. If we use market prices of zero coupon bonds
(or swap rates) for different maturities as data, the determination of α(t) as
a, say, piecewise constant function should not be a difficult problem. But
there are surprises: 

Curve fitting: A naïve approach
Let us assume that the risk free zero rate (with continuous compounding) is
given as R(0,T) = 0.06—0.03 exp(−T/4) (zero rate R per year, T in years).

If α is assumed to be piecewise constant, then determining it from mar-
ket data leads to a linear triangular system and could be solved, in principle,
recursively. 

In practice, the right hand side of the linear system is not known exactly,
but contains noise (bid-ask-spreads of swap rates, business-day-shifting due
to holidays, to name a few). 

If we use this naïve approach and have a (random) relative noise level of
at most 1 percent, then we obtain 
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Introduction 
When pricing structured or derivative financial instruments, the typical
steps a quant has to do are the following:

1. Choose a model for the movement of the underlying(s)
2. Identify (“calibrate”) the model parameters from market prices of liquid

instruments
3. Calculate the fair value of the structured instrument by appropriate

numerical techniques

We will concentrate on step 2 in this article. The techniques we will present
have been applied to various types of inverse problems in science and engineer-
ing and should be relevant also in computational finance. At my research
groups, we applied advanced inverse problems techniques successfully e.g. to
the following problems

– Reconstruct reinforcement bars in concrete from measurements of a
scattered magnetic field [Engl, Neubauer]

– Determine optimal cooling strategies in continuous casting and hot
rolling of steel (inverse heat conduction problems), e.g. [Binder, Engl,
Vessella], [Binder et al.], [Chen et al.] 

– Inferring the structure of ion channels from measurements (an inverse
problem in a coupled system of partial differential equations similar to
the semiconductor equations): [Burger, Eisenberg, Engl], [Burger et al.]

Let us continue with an example from finance: 

A first example: Hull-White
Assume that the task is to calculate the value of an annually callable bond
under a one factor Hull-White-model

dr(t) = (α(t) − β(t)r(t))dt + σ (t)dW

with r(t) being the short rate at time t, dW the increment of a Wiener process,
σ (t) the volatility of the Hull-White process, β (t) the mean reversion speed,
and α(t) the part of the drift term which has to be adjusted to fit the yield
curve of the currency under consideration.

Calibration problems – 
An inverse problems view
Heinz W. Engl, heinz.engl@oeaw.ac.at 
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Drift term in Hull-White. Data used for 25 years, annual time steps. Smooth
(synthetic) solution, nonsmooth solution obtained from noisy data. Reversion
speed = 0.08 (per year), volatility = 0.7%

Semi-annual

Don’t try to calculate the parameters too exactly
These results show some numerical error, which is not too severe. If one
wants to get more accurate results, the natural idea would be to make the
calculation grid finer. So we do the same calculations also for semi-annual,
quarter-annual and monthly time-steps:

What is happening here?

A functional analytic setting
We recapitulate:

We had to solve a linear integral equation “of the first kind” (meaning
that the function we are looking for occurs only inside the integral) with a
noisy right hand side. When the error level remained at 1 percent relative
error, the solutions got worse and worse, the finer the grid was.

Why did the oscillations in the above pictures arise?
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The simplest example of a first-kind integral equation, its solution being
x = f’, is s∫

0

x(t)dt = f (s).

If we perturb the right hand side by low-amplitude/high-frequency noise and
thus use noisy data of the form

fδ,n(s) := f (s) + δ · sin(ns/δ),

then ∥∥ fδ,n − f
∥∥

∞ ≤ δ and
∥∥D(fδ,n) − D(f )

∥∥
∞ = n .

Thus, arbitrarily small perturbations in the right hand side f may lead to
arbitrarily large perturbations in the solution if these perturbations are of
high frequency. If we solve this simple integral equation numerically by dis-
cretisation, the same effect as above appears, namely that the error becomes
larges as the discretization becomes finer.

The proper abstract setting in the framework of “functional analysis” of a
first-kind integral equation is a linear operator equation 

Tx = y

between Hilbert spaces X,Y. In both considered cases, the operator T is
“compact”, which is an abstract way of saying that it is smoothing. If we
define a generalised “solution” as least-squares, minimum norm solution

(minimise ‖x‖ among all solutions of ‖Tx − y‖ → min)

Then, if T is compact between function spaces, the (generalised) inverse of T
is an unbounded operator, which means that the (generalised) solution
depends discontinuously on the date; this in turn implies that even finite
dimensional approximations are unstable, and the instability increased
with dimension. Now we have seen the reasons why these oscillations
appeared and became worse with finer discretisation in the example above.

Problems whose solutions depend discontinuously on the data are called “ill
posed” and typically appear when modelling “inverse problems” like parameter
identification problems. This “ill posedness” can also be quantified and is, for inte-
gral equations, more severe the smoother the kernel of the integral operator is.

Regularisation: How to treat ill-posed problems
properly
If we think of the (linear) operator equation Tx=y from above, one (by now
classical) way to stabilise it is to solve (Tikhonov regularisation) 

xδ
α = arg min(

∥∥Tx − yδ
∥∥2 + α ‖x‖2)

instead of Tx = yδ . 
For a linear equation, this is equivalent to solving 

(T∗T + αI)xδ
α = T∗yδ

with T∗ being the adjoint operator of T. 
It can be shown (Engl-Hanke-Neubauer) that if the “regularisation parameter”

α is chosen appropriately (depending on the noise level δ), then the regularised
solution converges to the true solution, when δ tends to zero.

In the 1980-s, we developed a theory including implementable optimal
parameter choice strategies for various regularisation techniques for linear prob-
lems (Tikhonov, Landweber iteration, maximum entropy), which we extended to
nonlinear problems in the 90’s. This is essential because most parameter identifi-
cation problems are intrinsically non-linear. In finance, for example, the price of
an option depends in a non-linear way on the volatility surface.

A blast furnace example
Obviously, parameter identification problems do not only arise in computa-
tional finance but also in science and engineering applications (for a survey,
see, e.g. [Engl, Kügler]). 

For example, in ironmaking by the usage of blast furnaces, liquid slag is
chemically quite aggressive and therefore erodes the so-called hearth at the
bottom of the furnace. This erosion makes it necessary to rebuild a blast fur-
nace after 10 years or so, which may mean 8 years or 12 years. Shutting down a
blast furnace which produces several million tons of metallic iron per year for
several months, costs huge sums of money, and therefore it is essential to know
if the wall of the furnace is thick enough for a continued safe operation. 

Mathematically, this leads to a non-linear 3D anisotropic heat equation,
where the domains of iron/slag in the interior and the domain of the brick-
work is unknown and has to be determined by parameter identification
techniques. The data are continuous temperature measurements of thermo-
couples within the brickwork. Due to the extremely rough conditions in the
hearth, it happens quite frequently that thermocouples are destroyed or
that they flow away into the slag, and noise is quite high. Additionally, this
is a so-called sidewards heat equation (all reliable measurements are outside
the brick-slag-interface) which is “severely ill posed” (in the sense of the
quantification of ill-posedness mentioned above) and hence notoriously
unstable. A heuristic reason for this are the strong smoothing properties of
heat conduction and, more general, of diffusion “forward in time”. 
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Nevertheless, the following picture shows that by proper regularisation
techniques, reasonable results can be achieved. This project is carried out in
cooperation with Siemens VAI.

Adjoint problems
In the above example, one starts with a guess for the geometry of the interior
boundary of the wall, calculates the temperature distribution by appropri-
ate 3D finite elements, and then tries to minimise the Tikhonov functional
consisting of the sum of squares of the distance to the measurements plus a
penalty function which penalises oscillating boundaries.

To solve this optimisation problem, one needs to calculate the derivative
of the solution of a 3D-heat-equation (the forward problem) with respect to
the boundary of the wall which is described by hundreds of unknowns. If you
tried to do this by forward or central differences, you would need to solve
hundreds of 3D-nonlinear equations for one gradient calculation. When solv-
ing one forward problem takes 5 minutes (which is quite fast), it would take
you 6 to 12 hours to calculate one gradient, and several days or even weeks to
come to the solution which might have changed in the meantime. 

The technique of adjoint problems allows to calculate the gradient with
roughly the same effort as ONE forward problem, and therefore to find the
actual estimate for the wall thickness (“estimate” because there is noise
which cannot be removed completely) within a few hours. 

Alternatively to solving the minimisation problem to which Tikhonov
regularisation amounts, one could use iterative regularisation methods like
regularised Gauss-Newton or Landweber iteration, where the crucial regu-
larising effect comes from stopping the iteration at the right time: iteration
too far leads to error amplification. See e.g. [Engl, Scherzer].

In all these iterative methods, adjoint problems have to be solved.

Back to finance: Nonlinear inverse problems
Similar techniques should be – and it turns out that they are – applicable to
parameter identification problems in partial differential equations in com-
putational finance. 

The identification of local volatility [Dupire] by regularisation techniques
has been analyzed in [Egger, Engl] and extended (for example to incomplete
input data) in the UnRisk PRICING ENGINE. The following figures show a
local volatility surface without and with Tikhonov regularisation. 

Of course, the forward equation to be solved here is much easier to solve
than the 3D blast furnace equation and can be done within fractions of a sec-
ond. Nevertheless, time requirements for mark-to-market prices are so tight
that again adjoint techniques have to be applied. For Lévy models, leading to
fatter tails, the analysis including convergence rates has been done in
[Kindermann et al].

Our first example at the very beginning was a Hull-White model, which has
the advantage of closed form solutions for bonds, caps and swaptions. If, we
consider Black-Karasinski at the other extreme of widely used short-rate mod-
els, the calibration process needs the solution of a family of partial differential
equations (for the bonds, caps, swaptions) in each iteration of minimizing a
Tikhonov functional. For more information, see [UnRisk, Chapter 4.19]
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Local speed function for the Merton jump-diffusion model of [Andersen – Andreasen]

Conclusions
Identification and calibration are inverse problems, which have the property
of “ill posedness” which in turn leads to surprising effects: noise is amplified,
this noise amplification is the more severe the smoother the problem data
are, and finer discretisation/ more iterations make these problems even more
severe. Based on the well-developed mathematical theory of regularisation,
which is about optimal compromises between approximation and stability,
one can efficiently and stably solve such inverse problems.
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