
Interest-rate changes and their principal components
Hence, these interest-rate curves (or, as we do not prescribe a certain inter-
polation rule, to be more precise: interest-rate vectors) are points in a 17-
dimensional space. As a change in the overnight rate has virtually no influ-
ence on the present value of future cash flows, we do not use it for our fur-
ther calculations. Thus, we work with elements in a 16-dimensional space.

We calculated weekly changes of the given EUR curves and applied a
very plain principal component analysis, meaning just the calculation of
eigenvalues and eigenvectors of the Gramian matrix of the interest-rate
increments. No fading memory effects were modeled or taken into account. 

We did not care about different weights for different tenors of the interest
rates. Therefore, in this first approach, the short end of the yield curve is more
important, as the supporting points are more dense than at the far end.

The 16 principal components then had the following shapes:
For the calculation of these principal components of the increments, we

used all data sets (between 2000 and 2007). The first three unit vectors
exhibit the “shift, twist, butterly” behavior. Unit vector 1 explains 77 per-
cent of interest-rate changes, 1 and 2 explain 92 percent , and 1, 2, and 3
explain 96.88 percent of the weekly interest-rate changes.

Introduction  
It is common knowledge in risk management that movements of interest-
rate curves can be mainly described by just a few factors (often named
“shift,” “twist,” and “butterfly”). In this paper, we analyze if this knowledge
is supported by evidence; we study what these factors look like and how
many of them are needed to obtain a reasonable approximation. Finally, we
discuss how these principal components could be applied for the fast calcu-
lation of key figures in quantitative risk management, especially for doing a
historical value-at-risk (VaR) simulation.

Data Used
We start our analysis with daily EUR interest rate values (spot market, zero
rates continuous compounding) between August 2000 and July 2007 (1,766
data sets) given for the curve points {overnight, 1 week, 3 months, 6m, 9m,
1 year, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, 25y, 30y, 50y}.

Figure 1 shows the shapes of EUR curves for the first business day of July
for each of the years 2001 through 2007.
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A clever handful is enough
Andreas Binder, binder@mathconsult.co.at
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Figure 1. EUR curves for the first business day of July for each of the years 2001 through 2007.
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Robustness
For the above analysis, we used all available data sets. It turns out that if the observation window is reasonably long, the shapes of the main components
more or less always look the same, as on the following page.
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Figure 1. EUR curves for the first business day of July for each of the years 2001 through 2007 (continued).
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Discount factors or interest rates?
If we want to emphasize longer tenors of interest rates more than the shorter
rates, we can use the vectors of change in the discount factors instead of the
interest-rate changes:

As expected, the discount factors on the short end of the curve cannot
change too much, and therefore the first principal components of the dis-
count shifts start close to the origin.
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Different currencies
We analyzed the interest-rate shifts for different currencies (USD, GBP, CHF,
and JPY). It turns out that the principal components of the interest-rate
changes exhibit the same qualitative behavior for all these currencies. As an
example, we show the USD results.
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Quality of the projection to principal components
We applied the principal component analysis for the EUR yield curve incre-
ments to the first 1,000 data sets (2001–2004) and used the resulting princi-
pal components as a basis for the increments of the dates 2005 and later. We
measured the norm of an increment by

and obtained the following:

Norm of weekly Increments for 650 business days. Scale is percent.

Norm of approximation error after filtering one, two, three, and four 
principal components. Scale is percent.
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Application of these principal components to fast
VaR calculation
Now assume that your risk manager wants you to carry out an historical VaR
calculation for moderately complex financial instruments, which may be
equipped with embedded and possibly multiple options like callabilities
and which can therefore not be stripped into single cashflows. For the time
being, assume that the value of such an instrument depends explicitly on
interest-rate movements, but that volatility is assumed to be a parameter,
which is not to be changed for the interest-rate VaR.

Then the straightforward way to a historical VaR consists of the follow-
ing steps:

- Apply at least 250 historical changes of the interest-rate curve to today’s
yield curve.

- Calibrate the parameters of your preferred interest-rate model to the
shifted yield curve data.

- Valuate all instruments in your pocket under these at least 250 scenarios.
Hence, if your portfolio consists of 1,000 instruments, this means that

you have to carry out 250,000 valuations, which may take longer than a
short coffee break.

However, as the valuation operators typically have smoothing proper-
ties, it makes sense to write — at least formally — for the value V of an instru-
ment under the shifted curve r + Dr :

V (r + Dr) = V(r) + grad V. Dr + higher-order terms,

provided V is smooth. 

Taylor expansion and VaR results
The valuation operator V does, for non-vanilla instruments, not depend
directly on the yield curve but requires a typically ill-conditioned calibra-
tion process in a first step before the smoothing of the valuation is applied
(Engl, 2007). Therefore, if we want to apply divided differences for the calcu-
lation of the gradient (and therefore can easily switch between different cal-
ibration and valuation routines), we should take into account that differ-
ences in the data with high frequencies will be amplified by the calibration
process and may lead to oscillating results.

However, we have seen in the first section that the first principal compo-
nents of interest-rate changes typically show low frequencies and therefore
seem to be ideally suited as candidates for unit vectors in a transformed coor-
dinate system.   

For the ease of calculation, we calculated 95 percent and 99 percent
historical VaRs (one-week horizon) by applying one-factor Hull white mod-
els to 1,000 weekly interest-rate shifts. We did this either by brute force
(applying 1,000 curve-fitting and valuation routines) and by Taylor expan-
sion for the first four, five, and six principal components, respectively. We
valuated various callable interest-rate swaps (quarterly callable), reverse
floating notes, CMS floating notes, and digital range accruals. The maturi-
ty of the instruments was up to 30 years, and the reverse floating notes
were leveraged.

The results of the comparison were as follows:
- Typical errors between full historical 95 percent VaR and 95 percent

VaR based on four principal components was between less than one basis
point and up to ten basis points; for the 99 percent VaR was up to 30 basis
points.

- The quality of the approximation for the digital range accrual VaR was
lower due to the poorer quality of the Taylor approximation for the embed-
ded digital options.

- There was no systematic increase in accuracy when applying five or six
principal components instead of four. 

Conclusions
Based on daily data sets between 2001 and 2007, we have analysed the main
directions of interest-rate changes for the currencies EUR, USD, GBP, CHF,
and JPY. The hypothesis that principal directions of interest-rate movements
are shift, twist, and butterfly was confirmed. These principal components
can and should be used as unit directions in models reduced in dimensionali-
ty. For the fast calculation of the historical VaR of moderately structured
instruments, the approximation properties were extremely promising. 
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